skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gunnels, Taylor F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The organization of membrane proteins between and within membrane-bound compartments is critical to cellular function. Yet we lack approaches to regulate this organization in a range of membrane-based materials, such as engineered cells, exosomes, and liposomes. Uncovering and leveraging biophysical drivers of membrane protein organization to design membrane systems could greatly enhance the functionality of these materials. Towards this goal, we use de novo protein design, molecular dynamic simulations, and cell-free systems to explore how membrane-protein hydrophobic mismatch could be used to tune protein cotranslational integration and organization in synthetic lipid membranes. We find that membranes must deform to accommodate membrane-protein hydrophobic mismatch, which reduces the expression and co-translational insertion of membrane proteins into synthetic membranes. We use this principle to sort proteins both between and within membranes, thereby achieving one-pot assembly of vesicles with distinct functions and controlled split-protein assembly, respectively. Our results shed light on protein organization in biological membranes and provide a framework to design self-organizing membrane-based materials with applications such as artificial cells, biosensors, and therapeutic nanoparticles. 
    more » « less
  2. Abstract The ability of pathogens to develop drug resistance is a global health challenge. Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) presents an urgent need wherein several variants of concern resist neutralization by monoclonal antibody (mAb) therapies and vaccine‐induced sera. Decoy nanoparticles—cell‐mimicking particles that bind and inhibit virions—are an emerging class of therapeutics that may overcome such drug resistance challenges. To date, quantitative understanding as to how design features impact performance of these therapeutics is lacking. To address this gap, this study presents a systematic, comparative evaluation of various biologically derived nanoscale vesicles, which may be particularly well suited to sustained or repeated administration in the clinic due to low toxicity, and investigates their potential to inhibit multiple classes of model SARS‐CoV‐2 virions. A key finding is that such particles exhibit potent antiviral efficacy across multiple manufacturing methods, vesicle subclasses, and virus‐decoy binding affinities. In addition, these cell‐mimicking vesicles effectively inhibit model SARS‐CoV‐2 variants that evade mAbs and recombinant protein‐based decoy inhibitors. This study provides a foundation of knowledge that may guide the design of decoy nanoparticle inhibitors for SARS‐CoV‐2 and other viral infections. 
    more » « less